Micro-structural characterization of precipitation-synthesized fluorapatite nano-material by transmission electron microscopy using different sample preparation techniques.
نویسندگان
چکیده
Fluorapatite is a naturally occurring mineral of the apatite group and it is well known for its high physical and chemical stability. There is a recent interest in this ceramic to be used as a radioactive waste form material due to its intriguing chemical and physical properties. In this study, the nano-sized fluorapatite particles were synthesized using a precipitation method and the material was characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Two well-known methods, called solution-drop and the microtome cutting, were used to prepare the sample for TEM analysis. It was found that the microtome cutting technique is advantageous for examining the particle shape and cross-sectional morphology as well as for obtaining ultra-thin samples. However, this method introduces artifacts and strong background contrast for high-resolution transmission electron microscopy (HRTEM) observation. On the other hand, phase image simulations showed that the solution-drop method is reliable and stable for HRTEM analysis. Therefore, in order to comprehensively analyze the microstructure and morphology of the nano-material, it is necessary to combine both solution-drop and microtome cutting techniques for TEM sample preparation.
منابع مشابه
Preparation and characterization of fluorapatite-bioactive glass S53P4 nanocomposite
This research has been done to study characteristic and biocompatible evaluation of a nano-biocompositeceramic with the bioglass (BG) as a first phase. In this regard, synthesis of S53P4 (53% SiO2, 4% P2O5,23% Na2O and 20% CaO) bioglass has been considered as the first phase and flourapatite (FA) consideredas the second phase. Afterwards, nanocomposite with the base of S53P4 b...
متن کاملTransmission Electron Microscopy Sample Preparation of INCONEL 738 Nickel-Base Superalloy
Size, shape, volume fraction and distribution of embedded g/ phase in g phase has direct effect on strength of INCONEL alloy. Microstructure parameters of INCONEL phases are quantified from microstructure images using transmission electron microscopy (TEM). Different TEM sample preparation techniques were used to study INCONEL 738 alloy microstructure for transmission electron micros...
متن کاملIn Vitro behavior of mechanically activated nanosized Si-Mg-doped fluorapatite
Hydroxyapatite (HA) is perhaps the most attractive material for bone repair, replacement and regeneration, due to its chemical composition and crystallographic structure which are similar to those of natural bone mineral. However, replacement of various elements and compounds in HA, could improve biological properties of this material. The aim of this study was preparation, characterization and...
متن کاملThe effect of different pHs, Surfactants and dialyses times on preparation of nano Rod Hydroxyapatite
Nano HA rod was synthesized by precipitation method using Ca(NO3)24H2O and (NH4)2HPO4 as starting materials and ammonia solution as an agent for pH adjustment. The Ca/P molar ratio was maintained at 1.67. Then, the effect of different pH (4, 6, 8, 10, 11), different surfactants and different times for dialyses on nano HA rod were studied in this study. The samples were characterized by differen...
متن کاملOpto-structural studies of well-dispersed silicon nano-crystals grown by atom beam sputtering
Synthesis and characterization of nano-crystalline silicon grown by atom beam sputtering technique are reported. Rapid thermal annealing of the deposited films is carried out in Ar + 5% H2 atmosphere for 5 min at different temperatures for precipitation of silicon nano-crystals. The samples are characterized for their optical and structural properties using various techniques. Structural studie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Micron
دوره 39 3 شماره
صفحات -
تاریخ انتشار 2008